美女裸体黄网站18禁止免费下载,chinese东北嫖妓女嗷嗷叫,白嫩粗长浓精H

<u id="m854x"></u>
  • <i id="m854x"></i>
    <tr id="m854x"><code id="m854x"><option id="m854x"></option></code></tr><tr id="m854x"></tr>
    <ins id="m854x"><th id="m854x"><del id="m854x"></del></th></ins>
    首頁 >> 產品中心 >> 儀器 >> Kirkstall>>Quasi Vivo流動培養系統
    Quasi Vivo流動培養系統
    產品介紹
    技術參數
    產品應用
    配置清單
    產品介紹:

    鑒于人肝細胞原代培養在藥物代謝、毒性、副作用的研究中被視為核心檢驗標準,而原代培養的肝細胞經常面臨諸如解毒基因表達量下調的問題(如膜轉運蛋白、結合酶、細胞色素P45),在Vinci B等人的肝細胞研究中(Vinci B, et al. Modular bioreactor for primary human hepatocyte culture: medium flow stimulates expression and activity of detoxification genes. Biotechnol J. 2011; 6: 554-64),認為正是傳統靜置培養無法模擬的某些生理刺激,引發了基因表達的下調。而Vinci B通過Quasi Vivo流動培養人原代肝臟細胞后,不論基因表達量、酶活還是生物參數,均證明流動培養可特異性地上調多種解毒酶基因的表達,而且流動培養的人貼壁肝細胞,其解毒酶基因家族的表達水平接近或高于新鮮分離的肝臟細胞。

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

    實驗流程

    1、將原代肝細胞進行靜態培養,在第七天分組,一組保持靜態培養,一組改為Quasi Vivo流動培養,繼續培養至二十一天,進行檢測。

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

    2、分別進行流動培養、靜態培養、標準培養十四天后的肝臟細胞(FT297),形態無差異  

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

    3、流動培養下的肝細胞CYP1A1、CYP1A2、CYP2B6、CYP3A4、GSTa等解毒酶基因表達更高,到達峰值時長有差異。

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

    4、多種解毒基因上調,CYP1A1等基因表達甚至高于新鮮分離的肝臟細胞(FIH)

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

    5、流動培養提高了肝臟細胞CYP3A4、UGT2B4/7、CYP2C9的活性,化合物代謝速率顯著提高。

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

    文章小結:

    1、人原代肝臟細胞分別進行7-21天的流動培養、靜態培養;

    2、檢測肝臟細胞32個基因的表達量、酶活和生物參數;

    3、使用流動培養可提高人貼壁肝臟細胞解毒基因表達:

    ①UGT(尿苷二磷酸葡萄糖醛酸轉移酶)基因家族表達上調:UGT1A1/UGT2B4/UGT2B7;

    ②多藥耐藥相關蛋白1 (MDR1)和MRP2基因的mRNA的表達上調;

    ③外源物質/藥物代謝和運輸基因表達上調,并激活某些酶活性:CYP1A1/1A2/2B6/2C9/3A4;

    ④GST(谷胱甘肽S-轉移酶)基因表達上調。

     

    用于(貼壁)細胞培養的Quasi Vivo流動培養系統,利用培養基循環流動,模擬血流剪切應力環境,更貼近人肝臟細胞的體內環境,能促進原代肝臟細胞增殖、貼壁肝細胞的基因表達等。作為英國Kirkstall公司核心專利產品,Quasi Vivo流動培養系統創新地模擬了體內動態環境,并可同時結合3D培養構建細胞模型。流動培養系統主要由高精度蠕動泵(用于培養基循環流動)、特殊設計的培養腔室(低通量培養用、中-高通量培養用)耗材組成。Quasi Viv設備可自行拼裝,操作方便,按產品說明書清洗和滅菌后,所有耗材可長期、重復使用,大大降低了Quasi Vivo的使用成本。

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

    目前,Quasi Vivo流動培養系統已在全球超過70個專業研究機構獲得應用,已成功構建包括呼吸系統(肺成纖維細胞、支氣管上皮細胞等)、肝臟、腎臟、心血管、腦組織、糖尿病等研究模型(原代細胞模型)。

    英國Quasi Vivo流動培養系統 原代肝細胞基因表達上調 Quasi Vivo中國獨家代理商北京澤平

     

     

    Quasi Vivo參考文獻

    1.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
    2.Patricia M. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Scientific Reports Volume: 8, Issue: 1, pp 8784.
    3.Basma E. et al. 2020. A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports Volume: 10, Issue: 1, pp 3788.
    4.Miranda A. et al., 2016. A three dimensional (3D) human in vitro blood-brain barrier (BBB). Heart Volume: 102.
    5.Buesch S. et al., 2018. A Novel In Vitro Liver Cell Culture Flow System Allowing Long-Term Metabolism and Hepatotoxicity Studies. Applied In Vitro Toxicology Volume: 4, Issue: 3, pp 232-237.
    6.Alec O. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. 2019 PLOS ONE Volume: 14, Issue: 7.
    7.Sean M. et al., 2017. In-silico Characterisation of the Kirkstall QV900 In-Vitro System for Advanced Cell Culture. 5th International Conference on Computational and Mathematical Biomedical Engineering pp 1174-1177.
    8.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205. 
    9.Tomlinson, L. et al., 2019. In vitro liver zonation of primary rat hepatocytes.Front. Bioeng. Biotechnol., 7(17). 
    10.Elbakary, B. and Badhan R. K. S, 2020. A dynamic perfusion based blood brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports, 10(1),3788. 
    11.O’Keefe, A. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. Plos One, 14(7).  
    12.Miranda-Azpiazu, P. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases. Scientific Reports, 8, 8784. 
    13.Chandorkar, P. et al., 2017. Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections. Scientific Reports, 7, 11644. 
    14.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).  
    15.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2(3).   
    16.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106.  
    17.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of Cellular Biochemistry, 13.   
    18.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10).  
    19.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocyte like cell function. Archives of Toxicology, 90, 7.  
    20.Vinci, B. et al., 2012. An in vitro model of glucose and lipid metabolism in a multicompartmental bioreactor. Biotechnology Journal, 7. 
    21.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4), pp.1–9. 
    22.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2, pp.548–569.  
    23.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106, pp.127–137. 
    24.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of cellular biochemistry, 13(October), pp.1–13. Available at: 
    25.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10), pp.1–14. 
    26.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocytelike cell function. Archives of Toxicology, pp.3–7. 
    27.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).  
    28.Vinci, B. et al., 2011. Modular bioreactor for primary human hepatocyte culture: Medium flow stimulates expression and activity of detoxification genes. Biotechnology Journal, 6, pp.554–564. 
    29.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
    30.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205. 

    技術參數:
    產品應用:
    配置清單:

    版權所有:北京澤平科技有限責任公司   地址:北京市海淀區花園東路10號高德大廈8層816室

    本網站所有產品或服務僅用于科研等非醫療目的,不得用于臨床診斷或治療

    美女裸体黄网站18禁止免费下载,chinese东北嫖妓女嗷嗷叫,白嫩粗长浓精H